/** ****************************************************************************** * @file stm32f4xx_ll_fmc.c * @author MCD Application Team * @brief FMC Low Layer HAL module driver. * * This file provides firmware functions to manage the following * functionalities of the Flexible Memory Controller (FMC) peripheral memories: * + Initialization/de-initialization functions * + Peripheral Control functions * + Peripheral State functions * ****************************************************************************** * @attention * * Copyright (c) 2016 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** @verbatim ============================================================================== ##### FMC peripheral features ##### ============================================================================== [..] The Flexible memory controller (FMC) includes following memory controllers: (+) The NOR/PSRAM memory controller (+) The NAND/PC Card memory controller (+) The Synchronous DRAM (SDRAM) controller [..] The FMC functional block makes the interface with synchronous and asynchronous static memories, SDRAM memories, and 16-bit PC memory cards. Its main purposes are: (+) to translate AHB transactions into the appropriate external device protocol (+) to meet the access time requirements of the external memory devices [..] All external memories share the addresses, data and control signals with the controller. Each external device is accessed by means of a unique Chip Select. The FMC performs only one access at a time to an external device. The main features of the FMC controller are the following: (+) Interface with static-memory mapped devices including: (++) Static random access memory (SRAM) (++) Read-only memory (ROM) (++) NOR Flash memory/OneNAND Flash memory (++) PSRAM (4 memory banks) (++) 16-bit PC Card compatible devices (++) Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of data (+) Interface with synchronous DRAM (SDRAM) memories (+) Independent Chip Select control for each memory bank (+) Independent configuration for each memory bank @endverbatim ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32f4xx_hal.h" /** @addtogroup STM32F4xx_HAL_Driver * @{ */ #if defined(HAL_NOR_MODULE_ENABLED) || defined(HAL_SRAM_MODULE_ENABLED) || (defined(HAL_NAND_MODULE_ENABLED)) || defined(HAL_PCCARD_MODULE_ENABLED) || defined(HAL_SDRAM_MODULE_ENABLED) /** @defgroup FMC_LL FMC Low Layer * @brief FMC driver modules * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /** @defgroup FMC_LL_Private_Constants FMC Low Layer Private Constants * @{ */ /* ----------------------- FMC registers bit mask --------------------------- */ #if defined(FMC_Bank1) /* --- BCR Register ---*/ /* BCR register clear mask */ /* --- BTR Register ---*/ /* BTR register clear mask */ #define BTR_CLEAR_MASK ((uint32_t)(FMC_BTR1_ADDSET | FMC_BTR1_ADDHLD |\ FMC_BTR1_DATAST | FMC_BTR1_BUSTURN |\ FMC_BTR1_CLKDIV | FMC_BTR1_DATLAT |\ FMC_BTR1_ACCMOD)) /* --- BWTR Register ---*/ /* BWTR register clear mask */ #define BWTR_CLEAR_MASK ((uint32_t)(FMC_BWTR1_ADDSET | FMC_BWTR1_ADDHLD |\ FMC_BWTR1_DATAST | FMC_BWTR1_BUSTURN |\ FMC_BWTR1_ACCMOD)) #endif /* FMC_Bank1 */ #if defined(FMC_Bank3) || defined(FMC_Bank2_3) #if defined (FMC_PCR_PWAITEN) /* --- PCR Register ---*/ /* PCR register clear mask */ #define PCR_CLEAR_MASK ((uint32_t)(FMC_PCR_PWAITEN | FMC_PCR_PBKEN | \ FMC_PCR_PTYP | FMC_PCR_PWID | \ FMC_PCR_ECCEN | FMC_PCR_TCLR | \ FMC_PCR_TAR | FMC_PCR_ECCPS)) /* --- PMEM Register ---*/ /* PMEM register clear mask */ #define PMEM_CLEAR_MASK ((uint32_t)(FMC_PMEM_MEMSET2 | FMC_PMEM_MEMWAIT2 |\ FMC_PMEM_MEMHOLD2 | FMC_PMEM_MEMHIZ2)) /* --- PATT Register ---*/ /* PATT register clear mask */ #define PATT_CLEAR_MASK ((uint32_t)(FMC_PATT_ATTSET2 | FMC_PATT_ATTWAIT2 |\ FMC_PATT_ATTHOLD2 | FMC_PATT_ATTHIZ2)) #else /* --- PCR Register ---*/ /* PCR register clear mask */ #define PCR_CLEAR_MASK ((uint32_t)(FMC_PCR2_PWAITEN | FMC_PCR2_PBKEN | \ FMC_PCR2_PTYP | FMC_PCR2_PWID | \ FMC_PCR2_ECCEN | FMC_PCR2_TCLR | \ FMC_PCR2_TAR | FMC_PCR2_ECCPS)) /* --- PMEM Register ---*/ /* PMEM register clear mask */ #define PMEM_CLEAR_MASK ((uint32_t)(FMC_PMEM2_MEMSET2 | FMC_PMEM2_MEMWAIT2 |\ FMC_PMEM2_MEMHOLD2 | FMC_PMEM2_MEMHIZ2)) /* --- PATT Register ---*/ /* PATT register clear mask */ #define PATT_CLEAR_MASK ((uint32_t)(FMC_PATT2_ATTSET2 | FMC_PATT2_ATTWAIT2 |\ FMC_PATT2_ATTHOLD2 | FMC_PATT2_ATTHIZ2)) #endif /* FMC_PCR_PWAITEN */ #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ #if defined(FMC_Bank4) /* --- PCR Register ---*/ /* PCR register clear mask */ #define PCR4_CLEAR_MASK ((uint32_t)(FMC_PCR4_PWAITEN | FMC_PCR4_PBKEN | \ FMC_PCR4_PTYP | FMC_PCR4_PWID | \ FMC_PCR4_ECCEN | FMC_PCR4_TCLR | \ FMC_PCR4_TAR | FMC_PCR4_ECCPS)) /* --- PMEM Register ---*/ /* PMEM register clear mask */ #define PMEM4_CLEAR_MASK ((uint32_t)(FMC_PMEM4_MEMSET4 | FMC_PMEM4_MEMWAIT4 |\ FMC_PMEM4_MEMHOLD4 | FMC_PMEM4_MEMHIZ4)) /* --- PATT Register ---*/ /* PATT register clear mask */ #define PATT4_CLEAR_MASK ((uint32_t)(FMC_PATT4_ATTSET4 | FMC_PATT4_ATTWAIT4 |\ FMC_PATT4_ATTHOLD4 | FMC_PATT4_ATTHIZ4)) /* --- PIO4 Register ---*/ /* PIO4 register clear mask */ #define PIO4_CLEAR_MASK ((uint32_t)(FMC_PIO4_IOSET4 | FMC_PIO4_IOWAIT4 | \ FMC_PIO4_IOHOLD4 | FMC_PIO4_IOHIZ4)) #endif /* FMC_Bank4 */ #if defined(FMC_Bank5_6) /* --- SDCR Register ---*/ /* SDCR register clear mask */ #define SDCR_CLEAR_MASK ((uint32_t)(FMC_SDCR1_NC | FMC_SDCR1_NR | \ FMC_SDCR1_MWID | FMC_SDCR1_NB | \ FMC_SDCR1_CAS | FMC_SDCR1_WP | \ FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | \ FMC_SDCR1_RPIPE)) /* --- SDTR Register ---*/ /* SDTR register clear mask */ #define SDTR_CLEAR_MASK ((uint32_t)(FMC_SDTR1_TMRD | FMC_SDTR1_TXSR | \ FMC_SDTR1_TRAS | FMC_SDTR1_TRC | \ FMC_SDTR1_TWR | FMC_SDTR1_TRP | \ FMC_SDTR1_TRCD)) #endif /* FMC_Bank5_6 */ /** * @} */ /* Private macro -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ /* Exported functions --------------------------------------------------------*/ /** @defgroup FMC_LL_Exported_Functions FMC Low Layer Exported Functions * @{ */ #if defined(FMC_Bank1) /** @defgroup FMC_LL_Exported_Functions_NORSRAM FMC Low Layer NOR SRAM Exported Functions * @brief NORSRAM Controller functions * @verbatim ============================================================================== ##### How to use NORSRAM device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC NORSRAM banks in order to run the NORSRAM external devices. (+) FMC NORSRAM bank reset using the function FMC_NORSRAM_DeInit() (+) FMC NORSRAM bank control configuration using the function FMC_NORSRAM_Init() (+) FMC NORSRAM bank timing configuration using the function FMC_NORSRAM_Timing_Init() (+) FMC NORSRAM bank extended timing configuration using the function FMC_NORSRAM_Extended_Timing_Init() (+) FMC NORSRAM bank enable/disable write operation using the functions FMC_NORSRAM_WriteOperation_Enable()/FMC_NORSRAM_WriteOperation_Disable() @endverbatim * @{ */ /** @defgroup FMC_LL_NORSRAM_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC NORSRAM interface (+) De-initialize the FMC NORSRAM interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initialize the FMC_NORSRAM device according to the specified * control parameters in the FMC_NORSRAM_InitTypeDef * @param Device Pointer to NORSRAM device instance * @param Init Pointer to NORSRAM Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_InitTypeDef *Init) { uint32_t flashaccess; uint32_t btcr_reg; uint32_t mask; /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Init->NSBank)); assert_param(IS_FMC_MUX(Init->DataAddressMux)); assert_param(IS_FMC_MEMORY(Init->MemoryType)); assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_BURSTMODE(Init->BurstAccessMode)); assert_param(IS_FMC_WAIT_POLARITY(Init->WaitSignalPolarity)); #if defined(FMC_BCR1_WRAPMOD) assert_param(IS_FMC_WRAP_MODE(Init->WrapMode)); #endif /* FMC_BCR1_WRAPMOD */ assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(Init->WaitSignalActive)); assert_param(IS_FMC_WRITE_OPERATION(Init->WriteOperation)); assert_param(IS_FMC_WAITE_SIGNAL(Init->WaitSignal)); assert_param(IS_FMC_EXTENDED_MODE(Init->ExtendedMode)); assert_param(IS_FMC_ASYNWAIT(Init->AsynchronousWait)); assert_param(IS_FMC_WRITE_BURST(Init->WriteBurst)); #if defined(FMC_BCR1_CCLKEN) assert_param(IS_FMC_CONTINOUS_CLOCK(Init->ContinuousClock)); #endif #if defined(FMC_BCR1_WFDIS) assert_param(IS_FMC_WRITE_FIFO(Init->WriteFifo)); #endif /* FMC_BCR1_WFDIS */ assert_param(IS_FMC_PAGESIZE(Init->PageSize)); /* Disable NORSRAM Device */ __FMC_NORSRAM_DISABLE(Device, Init->NSBank); /* Set NORSRAM device control parameters */ if (Init->MemoryType == FMC_MEMORY_TYPE_NOR) { flashaccess = FMC_NORSRAM_FLASH_ACCESS_ENABLE; } else { flashaccess = FMC_NORSRAM_FLASH_ACCESS_DISABLE; } btcr_reg = (flashaccess | \ Init->DataAddressMux | \ Init->MemoryType | \ Init->MemoryDataWidth | \ Init->BurstAccessMode | \ Init->WaitSignalPolarity | \ Init->WaitSignalActive | \ Init->WriteOperation | \ Init->WaitSignal | \ Init->ExtendedMode | \ Init->AsynchronousWait | \ Init->WriteBurst); #if defined(FMC_BCR1_WRAPMOD) btcr_reg |= Init->WrapMode; #endif /* FMC_BCR1_WRAPMOD */ #if defined(FMC_BCR1_CCLKEN) btcr_reg |= Init->ContinuousClock; #endif /* FMC_BCR1_CCLKEN */ #if defined(FMC_BCR1_WFDIS) btcr_reg |= Init->WriteFifo; #endif /* FMC_BCR1_WFDIS */ btcr_reg |= Init->PageSize; mask = (FMC_BCR1_MBKEN | FMC_BCR1_MUXEN | FMC_BCR1_MTYP | FMC_BCR1_MWID | FMC_BCR1_FACCEN | FMC_BCR1_BURSTEN | FMC_BCR1_WAITPOL | FMC_BCR1_WAITCFG | FMC_BCR1_WREN | FMC_BCR1_WAITEN | FMC_BCR1_EXTMOD | FMC_BCR1_ASYNCWAIT | FMC_BCR1_CBURSTRW); #if defined(FMC_BCR1_WRAPMOD) mask |= FMC_BCR1_WRAPMOD; #endif /* FMC_BCR1_WRAPMOD */ #if defined(FMC_BCR1_CCLKEN) mask |= FMC_BCR1_CCLKEN; #endif #if defined(FMC_BCR1_WFDIS) mask |= FMC_BCR1_WFDIS; #endif /* FMC_BCR1_WFDIS */ mask |= FMC_BCR1_CPSIZE; MODIFY_REG(Device->BTCR[Init->NSBank], mask, btcr_reg); #if defined(FMC_BCR1_CCLKEN) /* Configure synchronous mode when Continuous clock is enabled for bank2..4 */ if ((Init->ContinuousClock == FMC_CONTINUOUS_CLOCK_SYNC_ASYNC) && (Init->NSBank != FMC_NORSRAM_BANK1)) { MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN, Init->ContinuousClock); } #endif #if defined(FMC_BCR1_WFDIS) if (Init->NSBank != FMC_NORSRAM_BANK1) { /* Configure Write FIFO mode when Write Fifo is enabled for bank2..4 */ SET_BIT(Device->BTCR[FMC_NORSRAM_BANK1], (uint32_t)(Init->WriteFifo)); } #endif /* FMC_BCR1_WFDIS */ return HAL_OK; } /** * @brief DeInitialize the FMC_NORSRAM peripheral * @param Device Pointer to NORSRAM device instance * @param ExDevice Pointer to NORSRAM extended mode device instance * @param Bank NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_DeInit(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_EXTENDED_TypeDef *ExDevice, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(ExDevice)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Disable the FMC_NORSRAM device */ __FMC_NORSRAM_DISABLE(Device, Bank); /* De-initialize the FMC_NORSRAM device */ /* FMC_NORSRAM_BANK1 */ if (Bank == FMC_NORSRAM_BANK1) { Device->BTCR[Bank] = 0x000030DBU; } /* FMC_NORSRAM_BANK2, FMC_NORSRAM_BANK3 or FMC_NORSRAM_BANK4 */ else { Device->BTCR[Bank] = 0x000030D2U; } Device->BTCR[Bank + 1U] = 0x0FFFFFFFU; ExDevice->BWTR[Bank] = 0x0FFFFFFFU; return HAL_OK; } /** * @brief Initialize the FMC_NORSRAM Timing according to the specified * parameters in the FMC_NORSRAM_TimingTypeDef * @param Device Pointer to NORSRAM device instance * @param Timing Pointer to NORSRAM Timing structure * @param Bank NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Timing_Init(FMC_NORSRAM_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank) { #if defined(FMC_BCR1_CCLKEN) uint32_t tmpr; #endif /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); assert_param(IS_FMC_CLK_DIV(Timing->CLKDivision)); assert_param(IS_FMC_DATA_LATENCY(Timing->DataLatency)); assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Set FMC_NORSRAM device timing parameters */ MODIFY_REG(Device->BTCR[Bank + 1U], BTR_CLEAR_MASK, (Timing->AddressSetupTime | ((Timing->AddressHoldTime) << FMC_BTR1_ADDHLD_Pos) | ((Timing->DataSetupTime) << FMC_BTR1_DATAST_Pos) | ((Timing->BusTurnAroundDuration) << FMC_BTR1_BUSTURN_Pos) | (((Timing->CLKDivision) - 1U) << FMC_BTR1_CLKDIV_Pos) | (((Timing->DataLatency) - 2U) << FMC_BTR1_DATLAT_Pos) | (Timing->AccessMode))); #if defined(FMC_BCR1_CCLKEN) /* Configure Clock division value (in NORSRAM bank 1) when continuous clock is enabled */ if (HAL_IS_BIT_SET(Device->BTCR[FMC_NORSRAM_BANK1], FMC_BCR1_CCLKEN)) { tmpr = (uint32_t)(Device->BTCR[FMC_NORSRAM_BANK1 + 1U] & ~((0x0FU) << FMC_BTR1_CLKDIV_Pos)); tmpr |= (uint32_t)(((Timing->CLKDivision) - 1U) << FMC_BTR1_CLKDIV_Pos); MODIFY_REG(Device->BTCR[FMC_NORSRAM_BANK1 + 1U], FMC_BTR1_CLKDIV, tmpr); } #endif return HAL_OK; } /** * @brief Initialize the FMC_NORSRAM Extended mode Timing according to the specified * parameters in the FMC_NORSRAM_TimingTypeDef * @param Device Pointer to NORSRAM device instance * @param Timing Pointer to NORSRAM Timing structure * @param Bank NORSRAM bank number * @param ExtendedMode FMC Extended Mode * This parameter can be one of the following values: * @arg FMC_EXTENDED_MODE_DISABLE * @arg FMC_EXTENDED_MODE_ENABLE * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_Extended_Timing_Init(FMC_NORSRAM_EXTENDED_TypeDef *Device, FMC_NORSRAM_TimingTypeDef *Timing, uint32_t Bank, uint32_t ExtendedMode) { /* Check the parameters */ assert_param(IS_FMC_EXTENDED_MODE(ExtendedMode)); /* Set NORSRAM device timing register for write configuration, if extended mode is used */ if (ExtendedMode == FMC_EXTENDED_MODE_ENABLE) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_EXTENDED_DEVICE(Device)); assert_param(IS_FMC_ADDRESS_SETUP_TIME(Timing->AddressSetupTime)); assert_param(IS_FMC_ADDRESS_HOLD_TIME(Timing->AddressHoldTime)); assert_param(IS_FMC_DATASETUP_TIME(Timing->DataSetupTime)); assert_param(IS_FMC_TURNAROUND_TIME(Timing->BusTurnAroundDuration)); assert_param(IS_FMC_ACCESS_MODE(Timing->AccessMode)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Set NORSRAM device timing register for write configuration, if extended mode is used */ MODIFY_REG(Device->BWTR[Bank], BWTR_CLEAR_MASK, (Timing->AddressSetupTime | ((Timing->AddressHoldTime) << FMC_BWTR1_ADDHLD_Pos) | ((Timing->DataSetupTime) << FMC_BWTR1_DATAST_Pos) | Timing->AccessMode | ((Timing->BusTurnAroundDuration) << FMC_BWTR1_BUSTURN_Pos))); } else { Device->BWTR[Bank] = 0x0FFFFFFFU; } return HAL_OK; } /** * @} */ /** @addtogroup FMC_LL_NORSRAM_Private_Functions_Group2 * @brief management functions * @verbatim ============================================================================== ##### FMC_NORSRAM Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC NORSRAM interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_NORSRAM write operation. * @param Device Pointer to NORSRAM device instance * @param Bank NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Enable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Enable write operation */ SET_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE); return HAL_OK; } /** * @brief Disables dynamically FMC_NORSRAM write operation. * @param Device Pointer to NORSRAM device instance * @param Bank NORSRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NORSRAM_WriteOperation_Disable(FMC_NORSRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NORSRAM_DEVICE(Device)); assert_param(IS_FMC_NORSRAM_BANK(Bank)); /* Disable write operation */ CLEAR_BIT(Device->BTCR[Bank], FMC_WRITE_OPERATION_ENABLE); return HAL_OK; } /** * @} */ /** * @} */ #endif /* FMC_Bank1 */ #if defined(FMC_Bank3) || defined(FMC_Bank2_3) /** @defgroup FMC_LL_Exported_Functions_NAND FMC Low Layer NAND Exported Functions * @brief NAND Controller functions * @verbatim ============================================================================== ##### How to use NAND device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC NAND banks in order to run the NAND external devices. (+) FMC NAND bank reset using the function FMC_NAND_DeInit() (+) FMC NAND bank control configuration using the function FMC_NAND_Init() (+) FMC NAND bank common space timing configuration using the function FMC_NAND_CommonSpace_Timing_Init() (+) FMC NAND bank attribute space timing configuration using the function FMC_NAND_AttributeSpace_Timing_Init() (+) FMC NAND bank enable/disable ECC correction feature using the functions FMC_NAND_ECC_Enable()/FMC_NAND_ECC_Disable() (+) FMC NAND bank get ECC correction code using the function FMC_NAND_GetECC() @endverbatim * @{ */ /** @defgroup FMC_LL_NAND_Exported_Functions_Group1 Initialization and de-initialization functions * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC NAND interface (+) De-initialize the FMC NAND interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_NAND device according to the specified * control parameters in the FMC_NAND_HandleTypeDef * @param Device Pointer to NAND device instance * @param Init Pointer to NAND Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_Init(FMC_NAND_TypeDef *Device, FMC_NAND_InitTypeDef *Init) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Init->NandBank)); assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); assert_param(IS_FMC_NAND_MEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_ECC_STATE(Init->EccComputation)); assert_param(IS_FMC_ECCPAGE_SIZE(Init->ECCPageSize)); assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); #if defined(FMC_Bank2_3) /* Set NAND device control parameters */ if (Init->NandBank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ MODIFY_REG(Device->PCR2, PCR_CLEAR_MASK, (Init->Waitfeature | FMC_PCR_MEMORY_TYPE_NAND | Init->MemoryDataWidth | Init->EccComputation | Init->ECCPageSize | ((Init->TCLRSetupTime) << FMC_PCR2_TCLR_Pos) | ((Init->TARSetupTime) << FMC_PCR2_TAR_Pos))); } else { /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PCR3, PCR_CLEAR_MASK, (Init->Waitfeature | FMC_PCR_MEMORY_TYPE_NAND | Init->MemoryDataWidth | Init->EccComputation | Init->ECCPageSize | ((Init->TCLRSetupTime) << FMC_PCR2_TCLR_Pos) | ((Init->TARSetupTime) << FMC_PCR2_TAR_Pos))); } #else /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PCR, PCR_CLEAR_MASK, (Init->Waitfeature | FMC_PCR_MEMORY_TYPE_NAND | Init->MemoryDataWidth | Init->EccComputation | Init->ECCPageSize | ((Init->TCLRSetupTime) << FMC_PCR_TCLR_Pos) | ((Init->TARSetupTime) << FMC_PCR_TAR_Pos))); #endif return HAL_OK; } /** * @brief Initializes the FMC_NAND Common space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device Pointer to NAND device instance * @param Timing Pointer to NAND timing structure * @param Bank NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_CommonSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); #if defined(FMC_Bank2_3) /* Set FMC_NAND device timing parameters */ if (Bank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ MODIFY_REG(Device->PMEM2, PMEM_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PMEM2_MEMWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PMEM2_MEMHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PMEM2_MEMHIZ2_Pos))); } else { /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PMEM3, PMEM_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PMEM2_MEMWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PMEM2_MEMHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PMEM2_MEMHIZ2_Pos))); } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PMEM, PMEM_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PMEM_MEMWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PMEM_MEMHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PMEM_MEMHIZ2_Pos))); #endif return HAL_OK; } /** * @brief Initializes the FMC_NAND Attribute space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device Pointer to NAND device instance * @param Timing Pointer to NAND timing structure * @param Bank NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_AttributeSpace_Timing_Init(FMC_NAND_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); assert_param(IS_FMC_NAND_BANK(Bank)); #if defined(FMC_Bank2_3) /* Set FMC_NAND device timing parameters */ if (Bank == FMC_NAND_BANK2) { /* NAND bank 2 registers configuration */ MODIFY_REG(Device->PATT2, PATT_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PATT2_ATTWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PATT2_ATTHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PATT2_ATTHIZ2_Pos))); } else { /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PATT3, PATT_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PATT2_ATTWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PATT2_ATTHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PATT2_ATTHIZ2_Pos))); } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); /* NAND bank 3 registers configuration */ MODIFY_REG(Device->PATT, PATT_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PATT_ATTWAIT2_Pos) | ((Timing->HoldSetupTime) << FMC_PATT_ATTHOLD2_Pos) | ((Timing->HiZSetupTime) << FMC_PATT_ATTHIZ2_Pos))); #endif return HAL_OK; } /** * @brief DeInitializes the FMC_NAND device * @param Device Pointer to NAND device instance * @param Bank NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_DeInit(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable the NAND Bank */ __FMC_NAND_DISABLE(Device, Bank); /* De-initialize the NAND Bank */ #if defined(FMC_Bank2_3) if (Bank == FMC_NAND_BANK2) { /* Set the FMC_NAND_BANK2 registers to their reset values */ WRITE_REG(Device->PCR2, 0x00000018U); WRITE_REG(Device->SR2, 0x00000040U); WRITE_REG(Device->PMEM2, 0xFCFCFCFCU); WRITE_REG(Device->PATT2, 0xFCFCFCFCU); } /* FMC_Bank3_NAND */ else { /* Set the FMC_NAND_BANK3 registers to their reset values */ WRITE_REG(Device->PCR3, 0x00000018U); WRITE_REG(Device->SR3, 0x00000040U); WRITE_REG(Device->PMEM3, 0xFCFCFCFCU); WRITE_REG(Device->PATT3, 0xFCFCFCFCU); } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); /* Set the FMC_NAND_BANK3 registers to their reset values */ WRITE_REG(Device->PCR, 0x00000018U); WRITE_REG(Device->SR, 0x00000040U); WRITE_REG(Device->PMEM, 0xFCFCFCFCU); WRITE_REG(Device->PATT, 0xFCFCFCFCU); #endif return HAL_OK; } /** * @} */ /** @defgroup HAL_FMC_NAND_Group2 Peripheral Control functions * @brief management functions * @verbatim ============================================================================== ##### FMC_NAND Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC NAND interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_NAND ECC feature. * @param Device Pointer to NAND device instance * @param Bank NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Enable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Enable ECC feature */ #if defined(FMC_Bank2_3) if (Bank == FMC_NAND_BANK2) { SET_BIT(Device->PCR2, FMC_PCR2_ECCEN); } else { SET_BIT(Device->PCR3, FMC_PCR2_ECCEN); } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); SET_BIT(Device->PCR, FMC_PCR_ECCEN); #endif return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device Pointer to NAND device instance * @param Bank NAND bank number * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_ECC_Disable(FMC_NAND_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Disable ECC feature */ #if defined(FMC_Bank2_3) if (Bank == FMC_NAND_BANK2) { CLEAR_BIT(Device->PCR2, FMC_PCR2_ECCEN); } else { CLEAR_BIT(Device->PCR3, FMC_PCR2_ECCEN); } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); CLEAR_BIT(Device->PCR, FMC_PCR_ECCEN); #endif return HAL_OK; } /** * @brief Disables dynamically FMC_NAND ECC feature. * @param Device Pointer to NAND device instance * @param ECCval Pointer to ECC value * @param Bank NAND bank number * @param Timeout Timeout wait value * @retval HAL status */ HAL_StatusTypeDef FMC_NAND_GetECC(FMC_NAND_TypeDef *Device, uint32_t *ECCval, uint32_t Bank, uint32_t Timeout) { uint32_t tickstart; /* Check the parameters */ assert_param(IS_FMC_NAND_DEVICE(Device)); assert_param(IS_FMC_NAND_BANK(Bank)); /* Get tick */ tickstart = HAL_GetTick(); /* Wait until FIFO is empty */ while (__FMC_NAND_GET_FLAG(Device, Bank, FMC_FLAG_FEMPT) == RESET) { /* Check for the Timeout */ if (Timeout != HAL_MAX_DELAY) { if (((HAL_GetTick() - tickstart) > Timeout) || (Timeout == 0U)) { return HAL_TIMEOUT; } } } #if defined(FMC_Bank2_3) if (Bank == FMC_NAND_BANK2) { /* Get the ECCR2 register value */ *ECCval = (uint32_t)Device->ECCR2; } else { /* Get the ECCR3 register value */ *ECCval = (uint32_t)Device->ECCR3; } #else /* Prevent unused argument(s) compilation warning if no assert_param check */ UNUSED(Bank); /* Get the ECCR register value */ *ECCval = (uint32_t)Device->ECCR; #endif return HAL_OK; } /** * @} */ #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ #if defined(FMC_Bank4) /** @addtogroup FMC_LL_PCCARD * @brief PCCARD Controller functions * @verbatim ============================================================================== ##### How to use PCCARD device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC PCCARD bank in order to run the PCCARD/compact flash external devices. (+) FMC PCCARD bank reset using the function FMC_PCCARD_DeInit() (+) FMC PCCARD bank control configuration using the function FMC_PCCARD_Init() (+) FMC PCCARD bank common space timing configuration using the function FMC_PCCARD_CommonSpace_Timing_Init() (+) FMC PCCARD bank attribute space timing configuration using the function FMC_PCCARD_AttributeSpace_Timing_Init() (+) FMC PCCARD bank IO space timing configuration using the function FMC_PCCARD_IOSpace_Timing_Init() @endverbatim * @{ */ /** @addtogroup FMC_LL_PCCARD_Private_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC PCCARD interface (+) De-initialize the FMC PCCARD interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_PCCARD device according to the specified * control parameters in the FMC_PCCARD_HandleTypeDef * @param Device Pointer to PCCARD device instance * @param Init Pointer to PCCARD Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_Init(FMC_PCCARD_TypeDef *Device, FMC_PCCARD_InitTypeDef *Init) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); #if defined(FMC_Bank3) || defined(FMC_Bank2_3) assert_param(IS_FMC_WAIT_FEATURE(Init->Waitfeature)); assert_param(IS_FMC_TCLR_TIME(Init->TCLRSetupTime)); assert_param(IS_FMC_TAR_TIME(Init->TARSetupTime)); #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ /* Set FMC_PCCARD device control parameters */ MODIFY_REG(Device->PCR4, (FMC_PCR4_PTYP | FMC_PCR4_PWAITEN | FMC_PCR4_PWID | FMC_PCR4_TCLR | FMC_PCR4_TAR), (FMC_PCR_MEMORY_TYPE_PCCARD | Init->Waitfeature | FMC_NAND_PCC_MEM_BUS_WIDTH_16 | (Init->TCLRSetupTime << FMC_PCR4_TCLR_Pos) | (Init->TARSetupTime << FMC_PCR4_TAR_Pos))); return HAL_OK; } /** * @brief Initializes the FMC_PCCARD Common space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device Pointer to PCCARD device instance * @param Timing Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_CommonSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); #if defined(FMC_Bank3) || defined(FMC_Bank2_3) assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ /* Set PCCARD timing parameters */ MODIFY_REG(Device->PMEM4, PMEM4_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PMEM4_MEMWAIT4_Pos) | ((Timing->HoldSetupTime) << FMC_PMEM4_MEMHOLD4_Pos) | ((Timing->HiZSetupTime) << FMC_PMEM4_MEMHIZ4_Pos))); return HAL_OK; } /** * @brief Initializes the FMC_PCCARD Attribute space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device Pointer to PCCARD device instance * @param Timing Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_AttributeSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); #if defined(FMC_Bank3) || defined(FMC_Bank2_3) assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ /* Set PCCARD timing parameters */ MODIFY_REG(Device->PATT4, PATT4_CLEAR_MASK, (Timing->SetupTime | ((Timing->WaitSetupTime) << FMC_PATT4_ATTWAIT4_Pos) | ((Timing->HoldSetupTime) << FMC_PATT4_ATTHOLD4_Pos) | ((Timing->HiZSetupTime) << FMC_PATT4_ATTHIZ4_Pos))); return HAL_OK; } /** * @brief Initializes the FMC_PCCARD IO space Timing according to the specified * parameters in the FMC_NAND_PCC_TimingTypeDef * @param Device Pointer to PCCARD device instance * @param Timing Pointer to PCCARD timing structure * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_IOSpace_Timing_Init(FMC_PCCARD_TypeDef *Device, FMC_NAND_PCC_TimingTypeDef *Timing) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); #if defined(FMC_Bank3) || defined(FMC_Bank2_3) assert_param(IS_FMC_SETUP_TIME(Timing->SetupTime)); assert_param(IS_FMC_WAIT_TIME(Timing->WaitSetupTime)); assert_param(IS_FMC_HOLD_TIME(Timing->HoldSetupTime)); assert_param(IS_FMC_HIZ_TIME(Timing->HiZSetupTime)); #endif /* FMC_Bank3) || defined(FMC_Bank2_3 */ /* Set FMC_PCCARD device timing parameters */ MODIFY_REG(Device->PIO4, PIO4_CLEAR_MASK, (Timing->SetupTime | (Timing->WaitSetupTime << FMC_PIO4_IOWAIT4_Pos) | (Timing->HoldSetupTime << FMC_PIO4_IOHOLD4_Pos) | (Timing->HiZSetupTime << FMC_PIO4_IOHIZ4_Pos))); return HAL_OK; } /** * @brief DeInitializes the FMC_PCCARD device * @param Device Pointer to PCCARD device instance * @retval HAL status */ HAL_StatusTypeDef FMC_PCCARD_DeInit(FMC_PCCARD_TypeDef *Device) { /* Check the parameters */ assert_param(IS_FMC_PCCARD_DEVICE(Device)); /* Disable the FMC_PCCARD device */ __FMC_PCCARD_DISABLE(Device); /* De-initialize the FMC_PCCARD device */ Device->PCR4 = 0x00000018U; Device->SR4 = 0x00000040U; Device->PMEM4 = 0xFCFCFCFCU; Device->PATT4 = 0xFCFCFCFCU; Device->PIO4 = 0xFCFCFCFCU; return HAL_OK; } /** * @} */ #endif /* FMC_Bank4 */ #if defined(FMC_Bank5_6) /** @defgroup FMC_LL_SDRAM * @brief SDRAM Controller functions * @verbatim ============================================================================== ##### How to use SDRAM device driver ##### ============================================================================== [..] This driver contains a set of APIs to interface with the FMC SDRAM banks in order to run the SDRAM external devices. (+) FMC SDRAM bank reset using the function FMC_SDRAM_DeInit() (+) FMC SDRAM bank control configuration using the function FMC_SDRAM_Init() (+) FMC SDRAM bank timing configuration using the function FMC_SDRAM_Timing_Init() (+) FMC SDRAM bank enable/disable write operation using the functions FMC_SDRAM_WriteOperation_Enable()/FMC_SDRAM_WriteOperation_Disable() (+) FMC SDRAM bank send command using the function FMC_SDRAM_SendCommand() @endverbatim * @{ */ /** @addtogroup FMC_LL_SDRAM_Private_Functions_Group1 * @brief Initialization and Configuration functions * @verbatim ============================================================================== ##### Initialization and de_initialization functions ##### ============================================================================== [..] This section provides functions allowing to: (+) Initialize and configure the FMC SDRAM interface (+) De-initialize the FMC SDRAM interface (+) Configure the FMC clock and associated GPIOs @endverbatim * @{ */ /** * @brief Initializes the FMC_SDRAM device according to the specified * control parameters in the FMC_SDRAM_InitTypeDef * @param Device Pointer to SDRAM device instance * @param Init Pointer to SDRAM Initialization structure * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_InitTypeDef *Init) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Init->SDBank)); assert_param(IS_FMC_COLUMNBITS_NUMBER(Init->ColumnBitsNumber)); assert_param(IS_FMC_ROWBITS_NUMBER(Init->RowBitsNumber)); assert_param(IS_FMC_SDMEMORY_WIDTH(Init->MemoryDataWidth)); assert_param(IS_FMC_INTERNALBANK_NUMBER(Init->InternalBankNumber)); assert_param(IS_FMC_CAS_LATENCY(Init->CASLatency)); assert_param(IS_FMC_WRITE_PROTECTION(Init->WriteProtection)); assert_param(IS_FMC_SDCLOCK_PERIOD(Init->SDClockPeriod)); assert_param(IS_FMC_READ_BURST(Init->ReadBurst)); assert_param(IS_FMC_READPIPE_DELAY(Init->ReadPipeDelay)); /* Set SDRAM bank configuration parameters */ if (Init->SDBank == FMC_SDRAM_BANK1) { MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK1], SDCR_CLEAR_MASK, (Init->ColumnBitsNumber | Init->RowBitsNumber | Init->MemoryDataWidth | Init->InternalBankNumber | Init->CASLatency | Init->WriteProtection | Init->SDClockPeriod | Init->ReadBurst | Init->ReadPipeDelay)); } else /* FMC_Bank2_SDRAM */ { MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK1], FMC_SDCR1_SDCLK | FMC_SDCR1_RBURST | FMC_SDCR1_RPIPE, (Init->SDClockPeriod | Init->ReadBurst | Init->ReadPipeDelay)); MODIFY_REG(Device->SDCR[FMC_SDRAM_BANK2], SDCR_CLEAR_MASK, (Init->ColumnBitsNumber | Init->RowBitsNumber | Init->MemoryDataWidth | Init->InternalBankNumber | Init->CASLatency | Init->WriteProtection)); } return HAL_OK; } /** * @brief Initializes the FMC_SDRAM device timing according to the specified * parameters in the FMC_SDRAM_TimingTypeDef * @param Device Pointer to SDRAM device instance * @param Timing Pointer to SDRAM Timing structure * @param Bank SDRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_Timing_Init(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_TimingTypeDef *Timing, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_LOADTOACTIVE_DELAY(Timing->LoadToActiveDelay)); assert_param(IS_FMC_EXITSELFREFRESH_DELAY(Timing->ExitSelfRefreshDelay)); assert_param(IS_FMC_SELFREFRESH_TIME(Timing->SelfRefreshTime)); assert_param(IS_FMC_ROWCYCLE_DELAY(Timing->RowCycleDelay)); assert_param(IS_FMC_WRITE_RECOVERY_TIME(Timing->WriteRecoveryTime)); assert_param(IS_FMC_RP_DELAY(Timing->RPDelay)); assert_param(IS_FMC_RCD_DELAY(Timing->RCDDelay)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Set SDRAM device timing parameters */ if (Bank == FMC_SDRAM_BANK1) { MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK1], SDTR_CLEAR_MASK, (((Timing->LoadToActiveDelay) - 1U) | (((Timing->ExitSelfRefreshDelay) - 1U) << FMC_SDTR1_TXSR_Pos) | (((Timing->SelfRefreshTime) - 1U) << FMC_SDTR1_TRAS_Pos) | (((Timing->RowCycleDelay) - 1U) << FMC_SDTR1_TRC_Pos) | (((Timing->WriteRecoveryTime) - 1U) << FMC_SDTR1_TWR_Pos) | (((Timing->RPDelay) - 1U) << FMC_SDTR1_TRP_Pos) | (((Timing->RCDDelay) - 1U) << FMC_SDTR1_TRCD_Pos))); } else /* FMC_Bank2_SDRAM */ { MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK1], FMC_SDTR1_TRC | FMC_SDTR1_TRP, (((Timing->RowCycleDelay) - 1U) << FMC_SDTR1_TRC_Pos) | (((Timing->RPDelay) - 1U) << FMC_SDTR1_TRP_Pos)); MODIFY_REG(Device->SDTR[FMC_SDRAM_BANK2], SDTR_CLEAR_MASK, (((Timing->LoadToActiveDelay) - 1U) | (((Timing->ExitSelfRefreshDelay) - 1U) << FMC_SDTR1_TXSR_Pos) | (((Timing->SelfRefreshTime) - 1U) << FMC_SDTR1_TRAS_Pos) | (((Timing->WriteRecoveryTime) - 1U) << FMC_SDTR1_TWR_Pos) | (((Timing->RCDDelay) - 1U) << FMC_SDTR1_TRCD_Pos))); } return HAL_OK; } /** * @brief DeInitializes the FMC_SDRAM peripheral * @param Device Pointer to SDRAM device instance * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_DeInit(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* De-initialize the SDRAM device */ Device->SDCR[Bank] = 0x000002D0U; Device->SDTR[Bank] = 0x0FFFFFFFU; Device->SDCMR = 0x00000000U; Device->SDRTR = 0x00000000U; Device->SDSR = 0x00000000U; return HAL_OK; } /** * @} */ /** @addtogroup FMC_LL_SDRAMPrivate_Functions_Group2 * @brief management functions * @verbatim ============================================================================== ##### FMC_SDRAM Control functions ##### ============================================================================== [..] This subsection provides a set of functions allowing to control dynamically the FMC SDRAM interface. @endverbatim * @{ */ /** * @brief Enables dynamically FMC_SDRAM write protection. * @param Device Pointer to SDRAM device instance * @param Bank SDRAM bank number * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Enable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Enable write protection */ SET_BIT(Device->SDCR[Bank], FMC_SDRAM_WRITE_PROTECTION_ENABLE); return HAL_OK; } /** * @brief Disables dynamically FMC_SDRAM write protection. * @param hsdram FMC_SDRAM handle * @retval HAL status */ HAL_StatusTypeDef FMC_SDRAM_WriteProtection_Disable(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Disable write protection */ CLEAR_BIT(Device->SDCR[Bank], FMC_SDRAM_WRITE_PROTECTION_ENABLE); return HAL_OK; } /** * @brief Send Command to the FMC SDRAM bank * @param Device Pointer to SDRAM device instance * @param Command Pointer to SDRAM command structure * @param Timing Pointer to SDRAM Timing structure * @param Timeout Timeout wait value * @retval HAL state */ HAL_StatusTypeDef FMC_SDRAM_SendCommand(FMC_SDRAM_TypeDef *Device, FMC_SDRAM_CommandTypeDef *Command, uint32_t Timeout) { uint32_t tickstart = 0U; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_COMMAND_MODE(Command->CommandMode)); assert_param(IS_FMC_COMMAND_TARGET(Command->CommandTarget)); assert_param(IS_FMC_AUTOREFRESH_NUMBER(Command->AutoRefreshNumber)); assert_param(IS_FMC_MODE_REGISTER(Command->ModeRegisterDefinition)); /* Set command register */ MODIFY_REG(Device->SDCMR, (FMC_SDCMR_MODE | FMC_SDCMR_CTB2 | FMC_SDCMR_CTB1 | FMC_SDCMR_NRFS | FMC_SDCMR_MRD), ((Command->CommandMode) | (Command->CommandTarget) | (((Command->AutoRefreshNumber) - 1U) << FMC_SDCMR_NRFS_Pos) | ((Command->ModeRegisterDefinition) << FMC_SDCMR_MRD_Pos))); /* Get tick */ tickstart = HAL_GetTick(); /* wait until command is send */ while (HAL_IS_BIT_SET(Device->SDSR, FMC_SDSR_BUSY)) { /* Check for the Timeout */ if (Timeout != HAL_MAX_DELAY) { if ((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout)) { return HAL_TIMEOUT; } } } return HAL_OK; } /** * @brief Program the SDRAM Memory Refresh rate. * @param Device Pointer to SDRAM device instance * @param RefreshRate The SDRAM refresh rate value. * @retval HAL state */ HAL_StatusTypeDef FMC_SDRAM_ProgramRefreshRate(FMC_SDRAM_TypeDef *Device, uint32_t RefreshRate) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_REFRESH_RATE(RefreshRate)); /* Set the refresh rate in command register */ MODIFY_REG(Device->SDRTR, FMC_SDRTR_COUNT, (RefreshRate << FMC_SDRTR_COUNT_Pos)); return HAL_OK; } /** * @brief Set the Number of consecutive SDRAM Memory auto Refresh commands. * @param Device Pointer to SDRAM device instance * @param AutoRefreshNumber Specifies the auto Refresh number. * @retval None */ HAL_StatusTypeDef FMC_SDRAM_SetAutoRefreshNumber(FMC_SDRAM_TypeDef *Device, uint32_t AutoRefreshNumber) { /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_AUTOREFRESH_NUMBER(AutoRefreshNumber)); /* Set the Auto-refresh number in command register */ MODIFY_REG(Device->SDCMR, FMC_SDCMR_NRFS, ((AutoRefreshNumber - 1U) << FMC_SDCMR_NRFS_Pos)); return HAL_OK; } /** * @brief Returns the indicated FMC SDRAM bank mode status. * @param Device Pointer to SDRAM device instance * @param Bank Defines the FMC SDRAM bank. This parameter can be * FMC_Bank1_SDRAM or FMC_Bank2_SDRAM. * @retval The FMC SDRAM bank mode status, could be on of the following values: * FMC_SDRAM_NORMAL_MODE, FMC_SDRAM_SELF_REFRESH_MODE or * FMC_SDRAM_POWER_DOWN_MODE. */ uint32_t FMC_SDRAM_GetModeStatus(FMC_SDRAM_TypeDef *Device, uint32_t Bank) { uint32_t tmpreg; /* Check the parameters */ assert_param(IS_FMC_SDRAM_DEVICE(Device)); assert_param(IS_FMC_SDRAM_BANK(Bank)); /* Get the corresponding bank mode */ if (Bank == FMC_SDRAM_BANK1) { tmpreg = (uint32_t)(Device->SDSR & FMC_SDSR_MODES1); } else { tmpreg = ((uint32_t)(Device->SDSR & FMC_SDSR_MODES2) >> 2U); } /* Return the mode status */ return tmpreg; } /** * @} */ /** * @} */ #endif /* FMC_Bank5_6 */ /** * @} */ /** * @} */ #endif /* HAL_NOR_MODULE_ENABLED */ /** * @} */ /** * @} */